
Copyright© 2016 KRvW Associates, LLC

Ken van Wyk, ken@krvw.com, @KRvW

Break ‘em and Build ‘em iOS

SecAppDev 2016
Ken van Wyk, @KRvW

Leuven, Belgium
7-11 March 2016

Copyright© 2016 KRvW Associates, LLC

Part I - Break ‘em!

2

Copyright© 2016 KRvW Associates, LLC

Biggest issue: lost/stolen device

Anyone with physical
access to your device can
get to a wealth of data
–PIN is not effective
–App data
–Keychains
–Properties

Data encryption helps, but
we can’t count on
developers using it

3

Copyright© 2016 KRvW Associates, LLC

Second biggest: insecure comms

Without additional
protection, mobile devices
are susceptible to the
“coffee shop attack”
– Anyone on an open WiFi

can eavesdrop on your data
– No different than any other

WiFi device really
Your apps MUST protect
your users’ data in transit

4

Copyright© 2016 KRvW Associates, LLC

Clear up some misconceptions

Apple’s iOS has been a
huge success for Apple
–Together with Android, they

have re-defined mobile
telephony

Apple has made great
advances in security
–They are still far from really

good
–Not even sure if they’re

pretty good
5

Copyright© 2016 KRvW Associates, LLC

Hardware encryption

Each iOS device (as of
3GS) has hardware crypto
module
– Unique AES-256 key for

every iOS device
– Sensitive data hardware

encrypted
Sounds brilliant, right?
– Well...

6

Copyright© 2016 KRvW Associates, LLC

iOS crypto keys

GID key - Group ID key
UID key - Unique per dev
Dkey - Default file key
EMF! - Encrypts entire
file system and HFS
journal
Class keys - One per
protection class
– Some derived from UID +

Passcode at boot time

7

Copyright© 2016 KRvW Associates, LLC

iOS NAND (SSD) mapping

Block 0 - Low level boot
loader
Block 1 - Effaceable storage
– Locker for crypto keys,

including Dkey and EMF!
Blocks 2-7 - NVRAM
parameters
Blocks 8-15 - Firmware
Blocks 8-(N-15) - File system
Blocks (N-15)-N - Last 15
blocks reserved by Apple

8

Copyright© 2016 KRvW Associates, LLC

WHAT?!

Yes, these keys are stored
in plaintext
No, you shouldn’t be able
to access them
– This has improved greatly in

the past couple of years
– Requires run-time exploit or

replaced boot loader

9

Copyright© 2016 KRvW Associates, LLC

Jailbreaks

Apple’s protection architecture
is based on a massive digital
signature hierarchy
–Starting from bootloader
–Through app loader

Jailbreak software breaks that
hierarchy
–Current breaks up to 9.0.2

DFU mode allows USB vector
for boot loader
–Older iPhones mostly, but…

10

Copyright© 2016 KRvW Associates, LLC

Keychains

Keychain API provided for
storage of small amounts
of sensitive data
–Login credentials, passwords,

etc.
–Encrypted using hardware

AES
Also sounds wonderful
–Wait for it…
–Key is as strong as your

device passcode
11

Copyright© 2016 KRvW Associates, LLC

Built-in file protection limitations

Pros
– Easy to use, with key

management done by iOS
– Powerful functionality
– Always available
– Zero performance hit

Cons
– For Complete, crypto keying

includes UDID + Passcode
l4 digit PIN problem

Your verdict?
12

Copyright© 2016 KRvW Associates, LLC

Built-in file protection classes

iOS (since 4) supports file protection classes
–NSFileProtectionComplete
–NSFileProtectionCompleteUnlessOpen
–NSFileProtectionCompleteUntilFirstUserAuthentication
–NSFileProtectionNone

13

Copyright© 2016 KRvW Associates, LLC

Keyboard data

All “keystrokes” are
stored
– Used for auto-correct

feature
– Nice spell checker
Key data can be harvested
using forensics
procedures
– Passwords, credit cards...
– Needle in haystack?

14

Copyright© 2016 KRvW Associates, LLC

Screen snapshots

Devices routinely grab
screen snapshots and store
in JPG
– Used for minimizing app

animation
– It looks pretty
WHAT?!
– It’s a problem
– Requires local access to

device, but still...

15

Copyright© 2016 KRvW Associates, LLC

Let’s consider the basics

We’ll cover these (from
the mobile top 10)
– Protecting secrets

lAt rest
l In transit

– Input/output validation
– Authentication
– Session management
– Access control
– Privacy concerns

16

Copyright© 2016 KRvW Associates, LLC

Static analysis of an app

Explore folders
– ./Documents
– ./Library/Caches/*
– ./Library/Cookies
– ./Library/Preferences
App bundle
– Hexdump of binary
– plist files
What else?

17

Copyright© 2016 KRvW Associates, LLC

SQLlite example

Let’s look at a database
app that stores sensitive
data into a SQLite db
– We’ll recover it trivially by

looking at the unencrypted
database file

18

Copyright© 2016 KRvW Associates, LLC

Examples

Airline app
–Stores frequent flyer data in

plaintext XML file
Healthcare app
–Stores patient data in plist

file
lBut it’s base64 encoded for

protection…

Banking app
–Framework cache revealed

sensitive account data
19

Copyright© 2016 KRvW Associates, LLC

Tools to use

Mac tools
– Finder
– iExplorer
– hexdump
– strings
– otool
– otx (otx.osxninja.com)
– class-dump

(iphone.freecoder.org/
classdump_en.html)

– Emacs (editor)
Xcode additional tools
– Clang (build and

analyze)
lFinds memory leaks and

others

20

Copyright© 2016 KRvW Associates, LLC

What to examine?

See for yourself
– There is no shortage of

sloppy applications in the
app stores

– Start with some apps that
you know store login
credentials

21

Copyright© 2016 KRvW Associates, LLC

Let’s go further

Consider jailbreaking to
further analyze things
–Get outside of app sandbox
–All OS files exposed

lKeylog, SMS, email
–Tethered vs. untethered
Tools and notes
–Works up to 8.1.2 on iPhone

6
lEvasi0n and others
lPlus Cydia, of course…

22

Copyright© 2016 KRvW Associates, LLC

Example - coffee shop attack

This one is trivial, but
let’s take a look
In this iGoat exercise, the
user’s credentials are sent
plaintext
– Simple web server running

on Mac responds
– If this were on a public

WiFi, a network sniffer
would be painless to launch

23

Copyright© 2016 KRvW Associates, LLC

Attack vector: web app weakness

Remember, modern
mobile devices share a lot
of weaknesses with web
applications
– Many shared technologies
– A smart phone is sort of like

a mobile web browser
lOnly worse in some regards

24

Copyright© 2016 KRvW Associates, LLC

SQL Injection

Most common
injection attack
– Attacker taints input data

with SQL statement
– Application constructs

SQL query via string
concatenation

– SQL passes to SQL
interpreter and runs on
server

Consider the following
input to an HTML form
– Form field fills in a

variable called
“CreditCardNum”

– Attacker enters
l ‘
l ‘ --
l ‘ or 1=1 --

– What happens next?

25

Copyright© 2016 KRvW Associates, LLC

SQL injection exercise - client side

In this one, a local SQL
db contains some
restricted content
– Attacker can use “SQLi” to

view restricted info
Not all SQLi weaknesses
are on the server side!

Question: Would db
encryption help?

26

Copyright© 2016 KRvW Associates, LLC

Part II - Build ‘em!

27

Copyright© 2016 KRvW Associates, LLC

Stanford Univ on iTunes

28

Copyright© 2016 KRvW Associates, LLC

Apple resources

Excellent developer
references and manuals
on iOS Developer Portal
– http://developer.apple.com/

devcenter/ios/index.action
Several free iBooks also
– Objective C
– COCOA Framework

29

Copyright© 2016 KRvW Associates, LLC

Also look at OWASP

Numerous information
resources that are relevant
to mobile apps
– Mobile Security Project
Growing community of
mobile developers at
OWASP

30

Copyright© 2016 KRvW Associates, LLC

And then there’s OWASP’s iGoat

OWASP project for iOS
devs
– iGoat
– Developer tool for learning

major security issues on iOS
platform

– Inspired by OWASP’s
WebGoat tool for web apps

Released 15 June 2011
31

Copyright© 2016 KRvW Associates, LLC

iGoat Layout

Exercise categories
– Data protection (transit)
– Authentication
– Data protection (rest)
– Injection

32

Copyright© 2016 KRvW Associates, LLC

Exercise example - Backgrounding

Intro describes the nature
of the issue
Credits page too, so
others can contribute with
due credit

33

Copyright© 2016 KRvW Associates, LLC

Exercise example - Main screen

This screen is the main
view of the exercise
– Enter data, etc., depending

on the exercise

34

Copyright© 2016 KRvW Associates, LLC

Exercise - Hints

Each exercise contains a
series of hints to help the
user
– Like in WebGoat, they are

meant to help, but not quite
solve the problem

35

Copyright© 2016 KRvW Associates, LLC

Exercise - Solution

Then there’s a solution
page for each exercise
– This describes how the

exercise can be solved
No source code
remediations yet
– That comes in the next step

36

Copyright© 2016 KRvW Associates, LLC

Now let’s try one

You’re welcome to follow
along on your Macs
You’ll need
– Xcode SDK for iOS
– iGoat distribution

lDownload tarball and unpack

37

Copyright© 2016 KRvW Associates, LLC

iGoat URLs

Project Home:
– https://www.owasp.org/index.php/OWASP_iGoat_Project

Source Home:
– http://code.google.com/p/owasp-igoat/

38

Copyright© 2016 KRvW Associates, LLC

Kenneth R. van Wyk
KRvW Associates, LLC

Ken@KRvW.com
http://www.KRvW.com

39

